
JOURNAL OF COMPUTATIONAL PHYSICS 132, 167–174 (1997)
ARTICLE NO. CP965635

Compact Finite Difference Method for Calculating Magnetic
Field Components of Cyclotrons1

Dong-o Jeon

National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321

Received May 30, 1995; revised September 4, 1996

C(r, u, z) 5 zB(r, u) 2
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2B(r, u)
The compact finite difference method was developed for calculat-

ing the off median plane magnetic field components of cyclotrons
when only the measured midplane field data are available. It has andbeen shown that the proposed compact finite difference differentia-
tors are better than the finite difference differentiators previously
reported by the author. The proposed compact finite difference B(r, u) 5 Bz(r, u, z 5 0).
method was tested by comparing the frequency response, by
applying to an analytical magnetic field, and by applying to mea-

Note that =2
2 5 ­2/­r2 1 ­/r­r 1 ­2/r2­u is the two-dimen-sured magnetic field data of the K1200 superconducting cyclotron

sional Laplacian operator in cylindrical polar coordinatesat the National Superconducting Cyclotron Laboratory. It should be
pointed out that this improvement was obtained at the expense and that no source is assumed to exit on the median plane.
of more complicated machinery of mathematics, namely solving In addition, this representation satisfies = ? B 5 0.
matrix problems. Q 1997 Academic Press Gordon and Taivassalo [1, 2] evaluated the coefficients

of expansion series using the second-order central differ-
ence scheme,1. INTRODUCTION

f i95 ( fi11 2 fi21)/2D (4)In most cases with cyclotrons, magnetic field only on the
median plane is measured due to narrow gaps of magnets

f 0i 5 ( fi12 1 fi22 2 2fi )/4D2, (5)and these midplane field data are utilized for various beam
dynamics computations. Median plane field data are suffi-

where fi 5 f (xi ) and D is the step size of the mesh hxi j.cient for computing linear properties of beams, while off
These schemes presented difficulties both in accuracy andmedian plane field components are necessary for calculat-
maximum order of expansion due to amplified noise pro-ing nonlinear properties. Using a fourth-order vector po-
duced by taking derivatives. The two-dimensional Lapla-tential and the measured midplane field data, and assuming
cian operator =2

2 should be applied successively to getmidplane field symmetry, the magnetic field components
higher order coefficients of the Taylor series. Differentia-up to z4 [1] are given by
tion amplifies the high frequency signals considerably
which contain noise from various sources. If an effective

Bz 5 B(r, u) 2
z2

2!
=2

2B(r, u) 1
z4

4!
=4

2B(r, u), (1) suppression of the high frequency signals is not achieved,
successive differentiation will soon destroy the significance
of the obtained data. Differentiators should also evaluateBr 5

­

­r
C(r, u, z), (2)

accurately the derivatives of signals over a sufficiently wide
range of low frequency.

Because the measured data of B(r, u) contain someBu 5
­

r­u
C(r, u, z), (3)

error or noise presumably in the rapidly varying Fourier
components, a specifically designed low-pass filter was em-

where Bz , Br , and Bu are magnetic field components in ployed to suppress the effects of these rapidly varying
cylindrical polar coordinates and where components when taking derivatives. As is pointed out in

the introduction of the previous paper [3], there are two
possible ways to compute derivatives of measured mid-1 Work supported by the National Science Foundation under Grant

Phy. 92-14992. plane magnetic field data numerically. One way to do so
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is to process a magnetic field using a certain low-pass filter The employed low-pass filter takes on the form
to remove the high frequency components before taking
any derivatives and to apply differentiators successively to bFi22 1 aFi21 1 Fi 1 aFi11 1 bFi12

(6)the processed field data to the desired order. This is rela-
tively simple and straightforward. The other way is to use a

5 afi 1
b
2

( fi11 1 fi21) 1
c
2

( fi12 1 fi22) 1
d
2

( fi13 1 fi23),combination of a low-pass filter and differentiators (called
‘‘intermediate differentiators’’ in Section 2) whenever dif-
ferentiation is performed. Although it is rather compli-

where Fi is the filtered values of fi at xi and a, b, a, b, c,cated, we decided to take the latter in order to maintain
and d are properly chosen constants. The reason why theseconsistency with the linear orbit codes that use only the
schemes are called ‘‘compact’’ is that either a or b is non-measured magnetic field data on the median plane without
zero. If all of them are zero, these schemes are reducedany filtering.
to finite difference schemes.Compact finite difference schemes were used both for

The frequency response of this filter isthe low-pass filter and the intermediate differentiators to
enhance the characteristics of the slowly varying Fourier
components of derivatives in comparison with the finite

H (F)(g) 5
a 1 b cos g 1 c cos 2g 1 d cos 3g

1 1 2a cos g 1 2b cos 2g
. (7)difference method that was presented by the author [3]

for solving this problem. A lot of work on compact finite
difference schemes has been done [4–6]. Especially, Lele

When the following constraints are applied[7] did recent work on compact finite difference schemes
and the proposed compact finite difference method was
motivated by his work.

H (F)(f) 5 0, and
d 2H (F)

dg 2 (f) 5 0, (8)In Section 2 are presented the proposed first and second
differentiators for the one-dimensional data array which
are a combination of a low-pass filter and intermediate

in addition to formal fourth-order accuracy, a two-parame-differentiators. In Section 3 are given the proposed first
ter family of schemes of derivatives is obtained that isand second differentiators for the two-dimensional data
defined byarray which are a combination of primary and secondary

low-pass filters and intermediate differentiators. In Section
4 we applied the proposed differentiators for the two-

a 5
1
4

(2 1 3a), b 5
1
16

(9 1 16a 1 10b),

(9)
dimensional data array to the magnetic field produced by
two infinite saturated iron bars. The significance of this
magnetic field is that this is the only case where we have c 5

1
4

(a 1 4b), d 5
1

16
(6b 2 1),

analytical forms for the field. In Section 5 is given the
result of application to the measured magnetic field data
of K1200 superconducting cyclotron at the National Super- with a truncation error (1/16)(3 2 2a 2 10b) D4f (4) where
conducting Cyclotron Laboratory at Michigan State Uni- D is the step size. Imposing the sixth-order constraint to
versity. And finally, a conclusion is given in Section 6. the above, we get

2. FIRST AND SECOND DIFFERENTIATORS
b 5

3 2 2a
10

, a 5
2 1 3a

4
, b 5

6 17a
8

,

(10)
IN ONE-DIMENSION

As was noted above, the proposed differentiators are c 5
6 1 a

20
, d 5

2 2 3a
40

.
combinations of a low-pass filter and ‘‘intermediate differ-
entiators,’’ which can be schematically depicted as

Finally, when the constraint (d 4H (F)/dg4)(f) 5 0 is im-
posed, a scheme with the coefficientsData to be processed

⇐

Low-pass filter
a 5 0, b 5

3
10

, a 5
1
2

,

(11)

⇐

Intermediate first or second differentiator

⇐ b 5
3
4

, c 5
3

10
, d 5

1
20Data of derivatives.
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The corresponding frequency response of this intermediate
first differentiator is

H (1)
0 (g) 5 i

(14/9) sin g 1 (1/18) sin 2g
1 1 (2/3) cos g

. (16)

The intermediate second differentiator takes on the form

a f 0i 21 1 f 0i 1 a f 0i 11 5 a
fi11 1 fi21 2 2fi

D2

(17)
1 b

fi12 1 fi22 2 2fi

4D2 ,

where f 0i is the approximate value of the second derivative
at xi . With the following choices of parameters, a family of

FIG. 1. Plot of the frequency response of the low-pass filter (solid tridiagonal schemes with a formal fourth-order truncation
line) used for the proposed differentiator together with that of the low-

error (24/6!)(11a 22) D4f (6) is obtained:pass filter used for the finite difference differentiator [3] (dot-dash line).
The proposed filter has a wider band of passage, stronger suppression
of high g components, and sharper cutoff frequency than the filter used

a 5
4
3

(1 2 a), b 5
1
3

(10a 2 1). (18)for the finite difference differentiator.

With a 5 2/11, a tridiagonal scheme with a formal sixth-
order accuracy is obtained:is obtained. The resultant frequency response is

a 5
2
11

, a 5
12
11

, b 5
3

11
. (19)

H (F)(g)

The corresponding frequency response is5
1/2 1 (3/4) cos g 1 (3/10) cos 2g 1 (1/20) cos 3g

1 1 (3/5) cos 2g
, (12)

H (2)
0 (g) 5

(24/11)(cos g 2 1) 1 (3/22)(cos 2g 2 1)
1 1 (4/11) cos g

. (20)and is depicted in Fig. 1. This is characterized by a relatively
sharply defined cutoff frequency, enhanced low frequency
behavior, and a strong high frequency suppression. The frequency response of the proposed first (second)

The intermediate first differentiator used for the pro- differentiator, H (1)(g)(H (2)(g)), is given as a product of
posed scheme takes on the form the frequency response of the low-pass filter and that of

the intermediate first (second) differentiator:

a f 9i 21 1 f i91 a f 9i 11 5 a
fi11 2 fi21

2D
1 b

fi12 2 fi22

4D
, (13)

H (1)(g) 5 H (1)
0 (g)H (F)(g), (21)

H (2)(g) 5 H (2)
0 (g)H (F)(g). (22)where f i9 is the approximate value of the first derivative at

xi . With the following choices of parameters, a family of
In Fig. 2 (Fig. 4) is depicted the frequency response oftridiagonal schemes with a formal fourth-order truncation

the proposed first (second) differentiator for 0 # g # ferror (4/5!)(3a 2 1) D4f (5) is obtained:
together with that of the first (second) finite difference
differentiator in [3] and that of the scheme in Eq. 23 (Eq.

a 5
2
3

(a 1 2), b 5
1
3

(4a 2 1). (14) 24) for comparison:

With a choice of a 5 1/3, the scheme becomes formally f i95
1

2D
( fi11 2 fi21), (23)

sixth-order accurate with a truncation error (4/7!) D6f (7)

and the coefficients are
f 0i 5

1
4D2 ( fi12 1 fi22 2 2fi ). (24)

a 5
1
3

, a 5
14
9

, b 5
1
9

. (15)
Here, g 5 1.05 corresponds to the 60th azimuthal harmonic



170 DONG-O JEON

FIG. 2. Plots of the frequency response of several first differentiators
FIG. 4. Plots of the frequency response of several second differentia-divided by i: mathematical differentiation (straight solid line), the pro-

tors: mathematical differentiation (quadratic solid line), the proposedposed compact finite difference differentiator (solid line), the finite differ-
compact finite difference differentiator (solid line), the finite differenceence differentiator [3] (dot-dash line), and the scheme in Eq. (23) (dotted
differentiator [3] (dot-dash line), and the scheme in Eq. 24 (dotted line).line). The compact finite difference differentiator is accurate over wider
The compact finite difference differentiator is accurate over a wider rangerange of low g and suppresses high g components more effectively than
of low g and suppresses high g components more effectively than thethe finite difference differentiator and the scheme in Eq. (23).
finite difference differentiator and the scheme in Eq. (24).

harmonic is already negligible. So the proposed differentia-for a 3608 field data with Du 5 18 and the fractional error in
tors are sufficient for handling the field data of thethe frequency response of the first (second) differentiator is
K1200 cyclotron.3.7% (4.1%), which is quite small. When the magnetic field

In Fig. 3 (Fig. 5) is depicted the fractional error in theof the K1200 superconducting cyclotron was Fourier ana-
frequencyresponse of the proposedfirst (second)differenti-lyzed, it was found that the amplitude above the 40th
ator from that of mathematical first (second) differentiation
for 0 # g # 1. Figure 3 (Fig. 5) also shows the curves of
fractional error in the frequency response of the finite differ-
ence differentiator [3] and the first (second) differentiator
in Eq. 23 (Eq. 24). Judging from Figs. 2 and 4 together with
Figs. 3 and 5, the proposed first (second) compact finite dif-
ference differentiator performs accurately over wider range
of low g and suppresses high g components more effectively
than the first (second) finite difference differentiator pre-
sented in [3]. Indeed, the proposed compact finite difference
differentiatorsare improvedcomparedwiththe finitediffer-
ence differentiators [3]. Of course, this was obtained at the
expense of more complicated machinery of mathematics,
namely solving matrix problems.

3. FIRST AND SECOND DIFFERENTIATORS
IN TWO-DIMENSION

The proposed first and second differentiators in two-
dimension are identical to those in one-dimension except

FIG. 3. Plots of the fractional error in the frequency response of the that they are accompanied by a ‘‘secondary low-pass filter’’
first differentiators in Fig. 2: the compact finite difference differentiator in y(x) when taking partial derivatives with respect to
(solid line), the finite difference differentiator [3] (dot-dash line), and

x( y). The same low-pass filter is used for both primary andthe scheme in Eq. (23) (dotted line). Clearly, the proposed compact finite
secondary low-pass filters. The following diagram shows adifference differentiator is accurate over a wider range of low g than the

other two differentiators. schematic flow diagram of the proposed differentiators:
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iron bar and 22 # x # 2, 22 # y # 2, and z # 21 for
the other. These bars are uniformly magnetized in the 1z
direction. Let us define x1 5 22, x2 5 2, y1 5 22, and
y2 5 2. The magnetic field due to the two sheets of surface
charge [1, 8] is analytically given by

Bz(x, y, z) 5
Bs

4f Oi, j (21)i1j Farctan
XiYj

Z1R1

1 arctan
XiYj

Z2R2
G,

(27)

where i, j 5 1, 2, and Bs 5 21.4 kG [1],

Xi 5 x 2 xi ,

Yj 5 y 2 yj ,

FIG. 5. Plots of the fractional error in the frequency response of the Z1 5 1 1 z,
second differentiators in Fig. 4: the compact finite difference differentiator

Z2 5 1 2 z,(solid line), the finite difference differentiator [3] (dot-dash line), and
the scheme in Eq. (24) (dotted line). Clearly the proposed compact finite

R6 5 (X 2
i 1 Y2

j 1 Z2
6)1/2.difference differentiator is accurate over a wider range of low g than the

other two differentiators.

Bz(x, y, z) is Taylor expanded around z 5 0 as in Eq.
(1) with

Data to be processed

⇐ B(x, y) 5 Bz(x, y, z 5 0). (28)
Primary low-pass filter

⇐ The program ‘‘Mathematica’’ was used to obtain the ana-
Intermediate first or second differentiator lytical expressions of various derivatives such as =2

2B, =4
2B,

⇐ and =6
2B with =2

2 5 ­2/­x 2 1 ­2/­y 2. Using these analytically
Secondary low-pass filter obtained terms evaluated at z 5 0.5 as a reference, accuracy

⇐ of the proposed compact finite difference scheme together
Data of derivatives. with the other two schemes was measured in terms of rms

error from the values of the corresponding terms that are
This secondary filter provides some benefits when deal- analytically obtained. The other two schemes are the finite

ing with data that are prone to error (or noise), as is pointed difference scheme presented in [3], and the scheme in Eq.
out in [3] (in [3], this is called a ‘‘vertical filter’’). If data (24). In Table I, the values of rms error in the various
do not contain any error (or noise) including truncation terms obtained by using the three different schemes are
error, the secondary filter is useless and only adds unneces- listed, where ‘‘CFD scheme’’ stands for the proposed com-
sary complexity. pact finite difference scheme in this paper and ‘‘FD

The frequency response of the proposed first partial scheme’’ the finite difference scheme presented in [3]. As
differentiator with respect to x is an example, the map of the error in the values of =2

2B 3
0.52/2! obtained by using the CFD (FD) scheme is depicted

H (1)
x (gx , gy) 5 H (F)(gy)H (1)

0 (gx)H (F)(gx ), (25) at bottom (top) in Fig. 6 over the range 24 # x # 4 and

and that of the proposed second partial differentiator with
respect to x is TABLE I

rms Error in Units of G
H (2)

x (gx , gy) 5 H (F)(gy)H (2)
0 (gx)H (F)(gx ), (26)

Term for CFD Scheme
comparison scheme FD scheme in Eq. (24)4. APPLICATION TO THE MAGNETIC FIELD

PRODUCED BY MAGNETIZED IRON BARS
=2

2B 3 0.52/2! 2.55 3 1022 3.60 3 1021 5.34
=4

2B 3 0.54/4! 8.26 3 1022 5.98 3 1021 3.79
Two long saturated iron bars were considered with the

=6
2B 3 0.56/6! 1.12 3 1021 4.54 3 1021 1.59

geometry 22 # x # 2, 22 # y # 2, and 1 # z for one
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FIG. 6. Plots of the error in =2
2B 3 0.52/2! obtained by using two different differentiators over 24 # x # 4 and 24 # y # 4 with Dx 5 Dy 5

0.1. The bottom map shows the error produced by the proposed compact finite difference differentiator, while the top map shows the error produced
by the finite difference differentiator in [3]. The maximum value of the bottom (top) map is 0.123 G (1.49 G) and the minimum value of the bottom
(top) map is 20.085 G (21.09 G). Both maps are depicted to the same scale. It should be pointed out that these errors are very small compared
with the maximum (minimum) value of D2

2B 3 0.52/2! which is 447 G (2948 G).

24 # y # 4. The maximum value of the bottom (top) map The values listed in Table I show that for the second
order term, the proposed CFD scheme is superior to theis 0.123 G (1.49 G) and the minimum value of the bottom

(top) map is 20.085 G (21.09 G). Both maps are depicted FD scheme by 14 times and superior to the scheme in Eq.
(24) by 205 times. But as we move on to the higher orderto the same scale. It should be pointed out that these errors

are very small compared with the maximum (minimum) terms, the accuracy degrades because rapidly varying com-
ponents of data become more and more dominant forvalue of =2

2B 3 0.52/2! which is 447 G (2948 G).
Numerical computation starts with the data of B(x, y) higher order derivative terms.

stored in a uniform square mesh with Dx 5 Dy 5 0.1.
Data from 24 # x # 4 and 24 # y # 4 were chosen for 5. APPLICATION TO THE MAGNETIC FIELD OF THE
comparison because this is the region where rapid change K1200 SUPERCONDUCTING CYCLOTRON
in the field values takes place. Field data expressed in kG
up to the 11th decimal place were used to avoid the effects The K1200 superconducting cyclotron was built at the

National Superconducting Cyclotron Laboratory to accel-of truncation error. The values of the fourth (sixth) order
term were obtained by applying the =2

2 operator twice erate a variety of heavy ions for nuclear physics experi-
ments and other applications. The median plane field map(three times).
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derivatives in Eqs. (1), (2), and (3). The results of orbit
computation conducted at nz 5 0.740 near the nz 5 3/4
resonance are presented.

Three different results of orbit computation are pre-
sented in Fig. 7. These maps were obtained by plotting
every 1208 for 1000 turns. The map at the top was obtained
by using Eqs. (23), (24) as differentiators, the map in the
middle by using the finite difference schemes in [3], and
the map at bottom by using the proposed compact finite
difference schemes. In order to contrast the difference
between the proposed CFD and the FD methods, magni-
fied maps around the unstable fixed point in the first quad-
rant are presented in Fig. 8. The map at the top (bottom)
in Fig. 8 is a magnification of the middle (bottom) map in
Fig. 7. The more differentiators systematically underesti-
mate the derivatives (see Figs. 3 and 5) of physically im-
portant slowly varying components of data, the more
spiraling-in is observed. Even though the tracking code
does not preserve symplectic conditions, these effects are
shared by all the data because tracking codes use the same
integrator. So the difference in each data is solely due to
the differentiators used. That’s why we concluded that

FIG. 7. Three maps of orbits at nz 5 0.740 near the nz 5 3/4 resonance
obtained by plotting every 1208 for 1000 turns. These maps were obtained
by using three different versions of the Z 4 Orbit Code, which differ only
in the numerical methods for computing derivatives: the code used for
producing the top map makes use of Eq. (23) and Eq. (24) for computing
field derivatives, the code for the middle map uses the finite difference
differentiators [3], and the code for the bottom map utilizes the proposed
compact finite difference differentiators. (Jz , fz ) is the action-angle vari-
able pair (see Fig. 8 also).

is measured in units of kG up to 5th decimal place in the
polar mesh with Du 5 18 and Dr 5 0.1 in. while the radius
of the machine is 42 in.

FIG. 8. Amplification of the middle and bottom maps in Fig. 7. TheThe magnetic field used as an example is for particles
top (bottom) map is an amplification of the middle (bottom) map in Fig.with charge per nucleon q/A 5 0.25 and a nominal final
7 around the unstable fixed point in the first quadrant. The top map,

energy per nucleon Ef 5 40 MeV. For orbit computations, obtained by using the finite difference differentiators [3], spirals in more
modified versions of the Z 4 Orbit Code [1] were used, than the bottom map, obtained by using the proposed compact finite

difference differentiators by approximately three times.which differ only in the numerical techniques for evaluating
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systematic underestimation should be the cause. Although available, and by comparing the orbit tracking results when
applied to measured magnetic field data of the K1200 su-not presented in this paper, when we chose an orbit well

inside the islands, we still observed similar spiraling-in (but perconducting cyclotron at the National Superconducting
Cyclotron Laboratory at Michigan State University.the rate of spiraling-in was reduced). From the fact that

the bottom map in Fig. 8 shows less inward spiraling than
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